Progress of the CEPC scintillatortungsten ECAL

Mingyi Dong <u>dongmy@ihep.ac.cn</u> Institute of High Energy Physics, CAS State Key laboratory of Nuclear detection and electronics

On behalf of CEPC calorimeter working group

Progress of the CEPC ScW ECAL, IAS 2019, 2019.1.23

Outline

- Introduction of CEPC scintillator-tungsten ECAL
- Scintillator module test and optimization
- Design and development of readout electronics
- Single layer prototype construction and test
- Summary

Requirements of CEPC ECAL

 Precise measurements of electrons and photons with energy resolution of :

 $\sigma_E/E\approx 16\%/\sqrt{E}\oplus 1\,\%$

• Jet energy resolution (ECAL combined with HCAL and tracker):

 $\sigma_E/E\approx(3\%-4\%)$

 Can give detailed information of showers: high granularity

Particle Flow Algorithm (PFA) calorimetry system is considered

- High granularity
- Compact showers(small radiation length X₀, and small Moliere radius R_M)
- Minimum dead materials
- Good energy resolution

Scintillator-tungsten ECAL

- A sampling calorimeter with scintillator-tungsten sandwich structure (ScW) is one of the ECAL options
- A R&D programme supported by Ministry of Science and Technology of China (MOST)
- Sandwich structure
 - Absorber + scintillator module + readout electronics(PCB)
- Scintillator readout module
 - Scintillator + SiPM
- Absorber
 - Tungsten

Optimization of ScW ECAL

Energy Ratio 10.0

- The key parameters were studied by simulation and optimization of the structure and geometry
 - Total thickness of the absorber: 80~90mm
 - Layer number: 25-30
 - Granularity: about 5mm × 5mm
 - Thickness of the scintillator: 2mm

1.2

0.8

0.2

Energy Ratio

Thickness of the absorber

Energy Ratio

175GeV γ

Integral Energy Ratio

ECAL Optimization II

- Dynamic range of ECAL scintillator module
 - 1MIP ~800 MIPs
- ~15 p.e. @ 1 MIP
 - SiPM >10k pixels

Scintillator module

- The scintillator module : Scintillator wrapped with reflector+ SiPM
- The key parameters: Granularity, Light output, Homogeneity, Dynamic range, Dead material /area
- Scintillator dimension : 5mm×45mm×2mm
- Cross arrangement of neighboring layers \rightarrow a transverse readout cell size of 5×5 mm²
- Reduction of the readout channels \rightarrow low cost
- SiPM coupled at the side or the bottom of the scintillator strip → few or negligible dead area

Module test and optimization

- At the beginning, SiPM (Hamamatsu S12571-010P) coupled at the side-end of the scintillator → bad uniformity
- Change the coupling mode: SiPM embedded at bottom-center of the strip
- Uniformity of light output is improved significantly

SiPM bottom-center embedded coupling

SiPM bottom-center embedded coupling mode will be adopted in the construction of the ScW ECAL prototype

- Improve the uniformity → The non-uniformity can reach about 15%
- No gap between the scintillators \rightarrow Avoid the dead area
- Easy to operation in the prototype construction
- Enabling to extend the SiPM area with more pixels and extend the dynamic range of the SiPM

SiPM linearity and dynamic range

The width of LED light are: 5ns - 400ns

- The SiPM output linearity and effective pixels are improved with the incident light width
- SiPM response can be described well with the theoretic formula

 $N_{fire} = N_{eff}(1 - e^{-\epsilon N_{in}/N_{eff}})$, Nfire: number of fired pixels, Neff: number of effective pixels, ϵ : PDE, Nin : number of incident photons.

Saturation effect could be corrected

Electronics Development

- Switched capacitor array store charge measurement
- 12 bits ADC conversion
- Variable Gain due to:
 - adjustable Cf of pre-amplifer
 - Rload on the board
 - Shaping time and delay

Electronics test

Test Platform

Cosmic ray test Cosmic Sci+PMT1 Sci+SiPM Sci+PMT2 Cosmic ray test Logic Trigger FEE A DAQ Cosmic ray test

- Calibration
- Cosmic-ray test with scintillator modules

Electronics cosmic-ray test

- Different scintillators were tested by cosmic rays
 - Plastic scintillator: BC408, EJ200
 - SiPM: S12571-010P with dimension of 1mm \times 1mm and 10k pixels

- The peak of the MIPs is clearly separated from the pedestal
- The electronics worked with good performance

Preliminary design of the calibration system

- Single photon-electron can not be used to calibrate each scintillator modules with For S12571-010P SiPM, due to big electronics noise with SPIROC chips
- LED calibration system is considered and designed

Preparation for single layer prototype

- Single layer prototype for the study of module layout, integration, preliminary performance
- 4 SPIROC2b chips, 144 modules
- Half : side-end coupling mode, another half : bottom-center embedded coupling mode

Front End Board

Scintillator modules

Scintillator strips are incised and wrapped in the SIC (Shanghai Institute of Ceramics)

Assembly

- 144 modules of scintillator strip coupling with SiPM (S12571-010P)
- I and IV: bottom-center embedded coupling mode, wrapped with ESR
- II: Side-end coupling mode scintillators wrapped with ESR
- III: Side-end coupling mode scintillators wrapped with Teflon

Pedestal of single layer

high Mean

- SiPM with H.V.
- Long time work stability

Cosmic-ray test

New scintillator strips

Summary

- Scintillator strip modules were tested and optimized
- Readout electronics was designed and developed
- A single layer prototype was constructed and test with cosmic-ray
- New scintillator module will be prepared to replace the old ones on the single layer prototype

Thanks for your attention !